Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway
نویسندگان
چکیده
Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.
منابع مشابه
1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice.
1-Deoxynojirimycin (DNJ) is widely used for the treatment of diabetes mellitus as an inhibitor of intestinal α-glucosidase. However, there are few reports about its effect on insulin sensitivity improvement. The aim of the present study was to investigate whether DNJ decreased hyperglycemia by improving insulin sensitivity. An economical method was established to prepare large amounts of DNJ. T...
متن کاملDual Role of Interleukin-6 in Regulating Insulin Sensitivity in Murine Skeletal Muscle
OBJECTIVE Cytokines are elevated in various insulin-resistant states, including type 2 diabetes and obesity, although the contribution of interleukin-6 (IL-6) in the induction of these diseases is controversial. RESEARCH DESIGN AND METHODS We analyzed the impact of IL-6 on insulin action in murine primary myocytes, skeletal muscle cell lines, and mice (wild type and protein-tyrosine phosphata...
متن کاملDevelopment of a novel GLUT4 translocation assay for identifying potential novel therapeutic targets for insulin sensitization.
GLUT4 (glucose transporter 4) plays important roles in glucose homoeostasis in vivo. GLUT4 expression and function are diminished in diabetic human and animal subjects. The goal of the present study is to develop a cell-based assay for identifying negative regulators of GLUT4 translocation as potential targets for the treatment of Type 2 diabetes. Traditional GLUT4 translocation assays performe...
متن کاملAbnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction.
AIMS Whole body and myocardial insulin resistance are features of non-insulin-dependent diabetes mellitus (NIDDM) and left-ventricular dysfunction (LVD). We determined whether abnormalities of insulin receptor substrate-1 (IRS1), IRS1-associated PI3K (IRS1-PI3K), and glucose transporter 4 (GLUT4) contribute to tissue-specific insulin resistance. METHODS AND RESULTS We collected skeletal muscl...
متن کاملLiraglutide Exerts Antidiabetic Effect via PTP1B and PI3K/Akt2 Signaling Pathway in Skeletal Muscle of KKAy Mice
Background. Liraglutide (a glucagon-like peptide 1 analog) was used for the treatment of type 2 diabetes (T2DM) which could produce glucose-dependent insulin secretion. Aim. The aim was to investigate whether liraglutide could improve myofibril and mitochondria injury in skeletal muscle and the mechanisms in diabetic KKAy mice. Method. We divided the male KKAy mice into 2 groups: liraglutide gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017